Graph Theory and its Applications

Jessie Deering
Department of Mathematics and Statistics
deeringj@goldmail.etsu.edu

October 17, 2012
What is a Graph?

- Simply a modeling tool or set of relationships
What is a Graph?

- Simply a modeling tool or set of relationships
- Technically, a set of vertices (objects) and a set of edges (relationships between objects)
What is a Graph?

- Simply a modeling tool or set of relationships
- Technically, a set of vertices (objects) and a set of edges (relationships between objects)
- Can be used for anything- tons of real world applications!
Examples of Graphs

Figure: The “House” graph

Figure: The caterpillar with code (2,0,1,0,1,0,1,0,2)
What is Graph Theory?

- Graph theory is an important modeling tool used to study network designs, communication, structural design, computer science, and many other things.
What is Graph Theory?

- Graph theory is an important modeling tool used to study network designs, communication, structural design, computer science, and many other things.
- In order to efficiently study these such applications, we must be able to describe graph parameters by providing limiting cases, like bounds, because many graph parameters are difficult to compute exactly.
First Formal Application of Graph Theory

Leonhard Euler composed a paper in 1736 titled *The Seven Bridges of Königsberg*. This paper contains the first real-world application/use of graph theory!
Visualizing the Bridges of Königsberg
Other Early Applications of Graph Theory

- Problems related to chessboard coverings and the "Knight’s Tour" (this problem dates back to the 9th century AD!)
Other Early Applications of Graph Theory

- Problems related to chessboard coverings and the “Knight’s Tour” (this problem dates back to the 9th century AD!)
- 1859- William Rowan Hamilton creates a toy involving finding a path through all cities on a map- he sells his design to a toy maker, but it was never a big hit :(
Modern Applications of Graph Theory

The advent of computers and phones has introduced a plethora of modern applications:

- Shortest path algorithm in a network
Modern Applications of Graph Theory

The advent of computers and phones has introduced a plethora of modern applications:

- Shortest path algorithm in a network
- Finding minimum spanning trees
Modern Applications of Graph Theory

The advent of computers and phones has introduced a plethora of modern applications:

- Shortest path algorithm in a network
- Finding minimum spanning trees
- Bi-Processor tasks (equates to finding a matching and coloring between tasks and processors)
Modern Applications of Graph Theory

The advent of computers and phones has introduced a plethora of modern applications:

- Shortest path algorithm in a network
- Finding minimum spanning trees
- Bi-Processor tasks (equates to finding a matching and coloring between tasks and processors)
- Scheduling problems
Modern Applications of Graph Theory

The advent of computers and phones has introduced a plethora of modern applications:

- Shortest path algorithm in a network
- Finding minimum spanning trees
- Bi-Processor tasks (equates to finding a matching and coloring between tasks and processors)
- Scheduling problems
- Computer network security
Modern Applications of Graph Theory

The advent of computers and phones has introduced a plethora of modern applications:

- Shortest path algorithm in a network
- Finding minimum spanning trees
- Bi-Processor tasks (equates to finding a matching and coloring between tasks and processors)
- Scheduling problems
- Computer network security
- Cell phone tower/network selection
Scheduling Problems

- A given set of jobs need to be assigned to time slots, where each job requires one time slot.
Scheduling Problems

- A given set of jobs need to be assigned to time slots, where each job requires one time slot.
- Jobs can be scheduled in any order, but pairs of jobs may be in conflict if they share a resource or cannot occur at the same time.

Jessie Deering Graph Theory and its Applications
Scheduling Problems

- A given set of jobs need to be assigned to time slots, where each job requires one time slot.
- Jobs can be scheduled in any order, but pairs of jobs may be in conflict if they share a resource or cannot occur at the same time.
- The corresponding graph contains a vertex for every job and an edge for every conflicting pair of jobs.
Scheduling Problems

- A given set of jobs need to be assigned to time slots, where each job requires one time slot.
- Jobs can be scheduled in any order, but pairs of jobs may be in conflict if they share a resource or cannot occur at the same time.
- The corresponding graph contains a vertex for every job and an edge for every conflicting pair of jobs.
- Taking the chromatic number of this graph gives the minimum time required to finish all jobs without conflict.
Scheduling Problems

Here’s an example:
Suppose we want to schedule some final exams for computer science courses with the following course numbers:
1007, 3137, 3157, 3203, 3261, 4115, 4118, 4156.
Suppose there are no students taking both 1007 and any other class, and no students sharing the following pairs of classes:

- 3137 and 3157
- 3137 and 4118
- 3137 and 3261
- 3137 and 4115
- 3137 and 4156
- 3203 and 3261
- 3157 and 4156
- 3203 and 4115
- 3261 and 4115
- 3203 and 4115
Scheduling Problems

Courses become vertices, and two vertices are connected with an edge if the courses have a student in common:

(as it turns out you need three exam slots!)
Domination is another graph parameter that has been very well studied for the past 20 (or so) years... It’s relatively new!
Domination is another graph parameter that has been very well studied for the past 20 (or so) years... It’s relatively new!

In your graph you want to know the smallest number of vertices you have to choose such that each other vertex in your graph is adjacent to one of the vertices you picked.
Domination is another graph parameter that has been very well studied for the past 20 (or so) years... It’s relatively new!

In your graph you want to know the smallest number of vertices you have to choose such that each other vertex in your graph is adjacent to one of the vertices you picked.

This is very much like a committee choice- you want to pick a committee such that either you are on the committee or you know someone who is... representation!
Other Applications of Domination

- Transportation networks
Other Applications of Domination

- Transportation networks
- Distribution logistics
Other Applications of Domination

- Transportation networks
- Distribution logistics
- Alarm location in facilities
Other Applications of Domination

- Transportation networks
- Distribution logistics
- Alarm location in facilities
- Radio/TV/Communication tower location (with military applications)
What if your edges contain more than two vertices?

- We have investigated “hitting sets”, or sets of vertices that cover all edges, as the number of vertices goes to infinity.
What if your edges contain more than two vertices?

- We have investigated "hitting sets", or sets of vertices that cover all edges, as the number of vertices goes to infinity
- We obtained a two point concentration: see http://arxiv.org/abs/1201.5097 for more details
In this case, we are investigating paths in graphs that are uphill and downhill (based on degrees)
In this case, we are investigating paths in graphs that are uphill and downhill (based on degrees).

This has applications in physics, including temperature and diffusion gradients, and in cartography with elevation changes.
In this case, we are investigating paths in graphs that are uphill and downhill (based on degrees).

This has applications in physics, including temperature and diffusion gradients, and in cartography with elevation changes.

Honors thesis, will appear at the Boland Undergraduate Research Symposium in the Spring, and at the Joint Meetings in Mathematics in San Diego, California, January 2013.
Subgraphs and Supergraphs

Here, we are given a random graph with certain properties
Subgraphs and Supergraphs

- Here, we are given a random graph with certain properties
- We want to know: What “supergraphs" can be built randomly from the given subgraphs that retain the properties of the original subgraph?
Here, we are given a random graph with certain properties. We want to know: What “supergraphs" can be built randomly from the given subgraphs that retain the properties of the original subgraph? Applications in disease spreading and transmission, and some network design.
- Department of Mathematics and Statistics discrete mathematics seminars
- Graph theory class, offered in the spring
- Wikipedia is pretty accurate, actually!
- Open conjectures in graph theory (especially the graph reconstruction conjecture)
Thanks for attending, please feel free to email me any time at deeringj@goldmail.etsu.edu!